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Introduction

- First observed in the 1930s by astronomers Jan Oort and
Fritz Zwicky due to inconsistencies with mass-to-light ratio
and the rotational velocities of spiral arms

- Further measurements by Vera Rubin showed the velocity
of objects in a galaxy as a function of radius from center is
near constant, suggesting dark matter distribution differs
from that of normal matter

- Continued measurements and improvements in metrology
now tell us that dark matter contributes ~85% of the
universe’s matter (5% known matter, 27% dark matter, 68%
dark energy)

Credit: Queen'’s University Super CDMS Group
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Relevance

Particle Physics

Cosmology

Finding a suitable candidate for Dark matter makes up around 27% of
dark matter is an open problem in the observable universe.
particle physics. To find a suitable Understanding dark matter is crucial in
candidate we need to look outside understanding the formative years of
the Standard Model and as such we the universe. A particularly important
look at exotic particles such as topic is discussing the temperature of
gravitinos and axions. species of dark matter, whether it is
‘hot’, ‘warm’, or ‘cold’.




What makes a suitable candidate?

Does not interact via electromagnetic force

Must exist to this day* (27% of energy)

Non-zero mass

Few interactions with observable matter



Dark Matter Temperature

Image Credit: Ben Moore - University of Zurich

Refers to velocity in a qualitative manner
- Cold dark matter is non-relativistic today
- Hot dark matter is relativistic

- Hotter dark matter requires more force to contain it
meaning smaller clumps cease to form

- Different candidates have different temperatures

- Primary candidates for CDM are weakly interacting HDM WDM CDM
massive particles (WIMPs)

- ACDM



GraVitinO - CDM Candidate? Credit: Robert Hurt - Caltech

- Supersymmetric partner to the proposed
quantum of gravity, the graviton

-  Potential WIMP

- Graviton suspected to be massless with few
interactions with normal matter
- Gravitino may be massive via symmetry breaking




We use Natural Units From Here On:
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Equations from Cosmology

The Friedmann-Lemaitre-Robertson-Walker metric describes the geometry of space-time in an expanding

universe:
Credit: European Space Agency

ds® = a*(t)dr? — dt* H = g —

In which entropy density of a comoving volume remains constant:
d(sa’)
dt

With this system we can derive the Friedmann equation

=0




Number Density, Entropy Density, Abundance
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Number Density Equilibrium
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Entropy Density
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Abundance
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Abundance Cont.
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Unitless (in natural units) equation with terms of variable magnitudes.

Mathematica does not like this equation, we rescale it:
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Abundance with Varying Cross Sections
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Problems with this Model

- Only considers radiation dominant universe

- It gives little information about the formative period of dark matter




More Complicated System to Solve
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Matter and Radiation Energy Density Post-Inflation
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Hubble Parameter and Temperature Post-Inflation
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