Identifying Emerging Jets at the ATLAS Experiment

By Owen Darragh
Carleton University
Under the supervision of Dr. Jesse Heilman

Large Hadron Collider

- Located at CERN
- Worlds Largest particle accelerator
- Can reach 13.6 TeV

ATLAS Detector

- Largest experiment on the LHC
- Consists of three parts
 - Inner Detector
 - Calorimeter
 - Muon Spectrometer

What are Emerging Jets?

- Proposed by Schwaller, Stolarski, and Weiler
- Assumes a QCD-like dark sector in the Hidden Valley
- Dark Mediator allows for creation of dark particles
- For this research
 - Using EJ to find dark QCD
 - Focused on LHC run 3

Creation of EJ

Dark QCD Models & Mediator Mass

- 5 model parameters for Dark QCD
- There are 3 potential mediator masses proposed
- Focused on Model A 600 GeV mediator mass

Model	Λ_d [GeV]	m_{π_d} [GeV]	$m_{ ho_d}$ [GeV]	m_{X_d} [GeV]
А	10	5	20	1400 1000 600
В	4	2	8	1400 1000 600
С	20	10	40	1400 1000 600
D	40	20	80	1400 1000 600
E	1.6	0.8	3.2	1400 1000 600

Dark QCD Models & Mediator Mass

- 5 model parameters for dark particles
- There are 3 potential mediator masses proposed
- Focused on Model A 600 GeV mediator mass

Model	Λ_d [GeV]	m_{π_d} [GeV]	$m_{ ho_d}$ [GeV]	m_{X_d} [GeV]
А	10	5	20	1400 1000 600
В	4	2	8	1400 1000 600
С	20	10	40	1400 1000 600
D	40	20	80	1400 1000 600
E	1.6	0.8	3.2	1400 1000 600

Simulating Emerging Jets

- Simulated events through ATLAS reconstruction
- Composition of models produced by study:
 - Truth Jet
 - Truth level
 - SM Particle let
 - Dark Jet
 - Truth level
 - Dark particle Jet
 - Reconstructed Jet
 - Detector read out level
 - Jets reconstructed and matched to a truth level jet

Dark Matched:

$$X_d \rightarrow Q_d \rightarrow Dark \rightarrow Truth \rightarrow Reco$$

Not Dark Matched:

$$X_d \rightarrow q \rightarrow Truth \rightarrow Reco$$

Training Methods

- Machine Learning using ROOT's TMVA
- Signal: Simulated dark matched and truth matched reco jets
- Background: Sample of Simulated QCD
- Boosted Decision Tree (BDT)
 - Used previously for examination for run 2
- Multi Layer Perceptron (MLP)
 - Basic and effective Neural Net
- Dense Neural Network (DNN)
 - More advanced MLP

Variables

- Variables used:
 - Eta
 - CentroidR
 - EMFrac
 - E
- Plans to include other variables in the future

Boosted Decision Tree

Multi Layer Perceptron - Tanh

- Activation function shown: Tanh
- Tested also using Sigmoid and ReLU

Dense Neural Network - ReLU

Tested also using Sigmoid and Tanh

Next Steps

- Promising results for classification
- Research will be continued into honors project
 - Check Methods with Different Mediator Masses
 - Check Methods with expanded QCD background
 - Expand variables used in analysis
 - Implement Classifier on events

Any questions?

References

- [1] B. Death, "Jet comparison, trigger, and sensitivity studies of Dark Sector Emerging Jet MC Models."
- [2] I. Ramirez-Berend, "Implementation of machine learning techniques in the search for emerging jets using the Atlas Run II Dataset."
- [3] P. Schwaller, D. Stolarski, and A. Weiler, "Emerging jets," *Journal of High Energy Physics*, vol. 2015, no. 5, 2015.

Backup

Dark pion lifetimes associated with Dark Mediator

χ_d [GeV]	$c au_{\pi_d}$ [mm]
600	0.5, 1, 2, 20, 150, 300
1000	1, 2, 5, 75, 150, 300
1400	2, 5, 20, 75, 150, 300

Activation Functions

• ReLU ->
$$\begin{cases} x & if \ x \ge 0 \\ 0 & otherwise \end{cases}$$

- Tanh -> tanh(x)
- Sigmoid -> $\frac{1}{1+e^{-x}}$

Correlation Matrix

BDT

- Using TMVA's kBDT method
- Conditions
 - 800 trees
 - Min node size: 5%
 - Max tree depth: 3
 - Using Ada boost with boost beta of 0.5
 - Cross entropy separation type
 - 20 cuts

MLP

- Using TMVA's kMLP method
- Conditions
 - Normalized
 - 1000 cycles
 - 2 layers of 4 and 5 neurons
 - Test rate of 10
 - Using useregulator = True

MLP - Sigmoid

MLP - ReLU

DNN

- Using TMVA's kDL method
- Conditions
 - Error strategy of cross entropy
 - Uniform weight initialization
 - 3 layers of 80 neurons
 - Max epoch of 1000

MLP - Sigmoid

MLP - Tanh

Cross Entropy Equation

- Defined by
 - $-p \cdot \ln(p) (1-p) \cdot \ln(1-p)$
 - Where p is purity (ranges from 0.5 to 0)