Microscopic Simulation of the Ionization Track Structure within Liquid Xenon

> Daniel Mayer Supervised by Prof. Razvan Gornea

Motivation

Motivation

Process of interest Fundamental particle interaction **Fast Charged Particle in medium** Energy loss and dissipation to medium Excimers, holes, and electrons in medium Recombination Measured free charge and scintillation light

Motivation

Goals

- Using atomic physics data and Monte Carlo simulation techniques, we can generate such a model of the ionization track structure without invoking effective models
- Can probe intrinsic fluctuations in produced quanta
- Can examine dependence on particle ID and energy
- Have precise spatial information crucial for recombination processes

Effective Treatment: $\Delta E = \frac{\mathrm{d}E}{\mathrm{d}x} \cdot \Delta x \quad Q \propto \Delta E$

Overview of Included Physics

- Path of track provided by Geant4
- Energy-loss along track handled by Allison-Cobb theory. Yields "primary" ionizations and excitations
- Auger cascades simulated after ionization of deep subshell according to EADL data
- 1°, 2°, 3°... electrons tracked individually until threshold
 - Includes E and θ-dependance of ionizations, excitations, elastic scatters
- 1°, 2°, 3°... electrons thermalized after threshold

Implementation

- Monte Carlo simulation implemented in C++ with the aid of CERN/ROOT libraries and RNG's
- Focus on Xe: data available, of interest to EXO-200 and nEXO R&D
- Output provides list of final products (e.g. ions, electrons, excitations), with their time of formation, energy of formation etc.

5.49 Alpha in LXe

5.49 Alpha in LXe

10

5.49 Alpha in LXe

11

5.49 Alpha in LXe

Alpha-5.49MeV

Alpha-5.49MeV

Alpha-5.49MeV

17

Alpha-5.49MeV

Alpha-5.49MeV

Charge and Total Quanta yields

Future Work

Remove Geant4 link

- Large-angle scatters by incident particle
- Include treatment of multi-scatter energy depositions
- Resolve dE/dx discrepancies found between model implemented and existing codes
- Expand to cover nuclear recoils
- Review literature for Ar data to include as second medium

Experience and Personal Growth

- Lots of exposure to object-oriented programming
- Writing a simulation is v. different from just using it...
 - What physics do you include?
 - How do you implement a process to simulate it efficiently and effectively?
- Working with a small research group
- In research, things don't always work the way you want them too 「_(ッ)_/