

Hello Everybody!

Austin de St. Croix (in conjunction with Daniel Mayer) Supervisor: Dr. Razvan Gornea Carleton University

RCX: ReCombination in liquid Xenon 1. Motivation

Liquid Noble Gas Detectors \rightarrow cutting edge of particle physics! \rightarrow typically use liquid Argon or Xenon as detection medium \rightarrow particles deposit energy in medium, we measure this

Time Projection Chamber (TPC)

Some experiments around the world:

EXO - neutrinoless double beta decay, xenon darkside - dark matter, argon XENON - dark matter LUX - dark matter, xenon ICARUS, DUNE, MicroBOONE - neutrinos, argon PandaX 2 - dark matter, neutrinoless double beta, xenon

and many more...

RCX: ReCombination in liquid Xenon 2. What is measured

Particles deposit their energy by colliding with xenon atoms resulting in <u>ion/electron pairs</u> and <u>excited states</u>

A) Excited states

Various states relax \rightarrow light

B) lon/electron pairs

Some e^- recombine with ions \rightarrow **light** Others escape to cathode \rightarrow **charge**

TPCs have an applied electric field

TPCs measure light and charge

RCX: ReCombination in liquid Xenon 3. Chemistry of recombination

A) Excited states relaxation (self-trapped exciton luminescence)

3.
$$Xe_2^* \rightarrow 2Xe + \gamma + Q_{split}$$

B) Excited states recombining (recombination luminescence)

RCX: ReCombination in liquid Xenon 5. Application (Recombination Monte Carlo)

> <u>Application</u> perform recombination on tracks produced by Daniel

Advantages of this simulation

- Detailed time structure of light signal
- Charge collection vs. field orientation
- Heat deposition in detector

- 1. Better experimental understanding
- 2. More discrimination power
- 3. More chance for discovery!

RCX: ReCombination in liquid Xenon 11. Improvements, whats next

Improvements

- Change implementation to handle high charge density of track core \rightarrow ie more realistic physics
- Investigate screening of charge in LXe

Further work (aside from above changes)

- Investigate heat deposition in detail
- Analyze larger data sets, various particles and energies
- Study dependance of field direction vs. charge collection
- Investigate timing structure \rightarrow see if can use as further discrimination tool
- Apply to Argon (once the track's are also simulated)

RCX: ReCombination in liquid Xenon 12. Learning

<u>Learned</u>

- How to perform a proper literature review/study, become knowledgeable in a specific field
- Co-operate with a partner on a complex project (working with Daniel Mayer)
- MORE coding skills (c++, ROOT, compiling and general library implementation knowledge)
- Mentorship skills and planning (supervising Benjamin Weiser's summer research)
- How to disagree with other scientists (and still be cool afterwards)