

Classifying Quark and Gluon Jets for ATLAS at CERN

Gareth Smith Supervisor: Dag Gillberg

September 17th 2018 Carleton Student Presentations

The ATLAS experiment

- The ATLAS experiment is a general purpose experiment at the LHC.
- It is used to study proton-proton collisions at 13 TeV.

What is a jet?

Matrix element level

Collision between two partons in LHC. Results in two partons at first order.

Gareth Smith (Carleton University)

Hadron level quark/gluon jet classification

What is a jet?

Gareth Smith (Carleton University)

Hadron level quark/gluon jet classification

Why do we want a jet classifier?

Interested in calorimeter **response**, aka Jet Energy Scale (**JES**).
Ratio of transverse momentum at reco level and hadron level.

$$R = p_{\mathrm{T}}^{\mathrm{reco}} / p_{\mathrm{T}}^{\mathrm{hadron}}$$

- Response depends on flavour of jet (initiated by quark or gluon).
- For many analyses, *Jet Energy Scale uncertainty* is a dominant uncertainty.
- Knowing the flavour of each jet will reduce the *flavour composition* component of this uncertainty.

Why do we want a hadron-level jet classifier?

- Jets are currently tagged as quark or gluon jets by looking at the highest $p_{\rm T}$ parton at parton shower level.
- Parton showering is modelled by a Monte Carlo generator such as Pythia, Herwig, Sherpa.
- Partons are unphysical, so the parton level is handled differently by each generator.
- Using partons to label jets introduces a dependence on the generator used. Instead we should define quark and gluon jets by their *physical properties at hadron level*. This is the focus of my work.

• Number of constituents:

On average, gluon jets have more constituent particles.

12/23

• Number of constituents.

Gluon jet

Quark jet

Width:
On average, gluon jets are wider.

Jet Width

- Number of constituents.
- Width.

Total of 13 input variables

Training a classifier using TMVA

- Classifier trained to distinguish two classes of data: quark and gluon jets (as labelled using parton information).
- Gives each jet a value on [-1,1] depending if it is "quark-like" or "gluon-like".

Two MVA methods used

Fisher

- Linear discriminant.
- Training data used to determine coefficients.

$$y_F(i) = F_0 + \sum_{k=1}^{n_{\text{var}}} F_k x_k(i)$$

Gareth Smith (Carleton University)

Hadron level quark/gluon jet classification August 22, 2018

How effective are the classifiers?

A good metric is the separation between quark and gluon distributions.

$$\langle S^2 \rangle = \frac{1}{2} \int \frac{(\hat{y}_S(y) - \hat{y}_B(y))^2}{\hat{y}_S(y) + \hat{y}_B(y)} dy$$
 equations

- Is 1 for two distributions with no overlap, and 0 for two identical distributions.
- Trained classifiers are stronger than the strongest input variable.
- Fisher is as good as or better than Boosted Decision Trees.

Response of "quark-like" and "gluon-like" jets

- Quark jets have a higher average response than gluon jets.
- We would hope that the more "quark-like" a jet is, as defined by our classifier, the higher the response.

Response of "quark-like" and "gluon-like" jets

- Quark jets have a higher average response than gluon jets.
- We would hope that the more "quark-like" a jet is, as defined by our classifier, the higher the response.

Gareth Smith (Carleton University)

Hadron level quark/gluon jet classification August 22, 2018 19/23

Response of "quark-like" and "gluon-like" jets

Gluon jets labelled using parton information.

Quark jets labelled using parton information.

25% most "gluon-like" jets using classifier.

25% most "quark-like" jets using classifier.

Classifier can describe the response difference between quark and gluon jets just as well as the parton information can!

Conclusions

- I have trained quark/gluon jet classifiers using hadron level inputs.
 - Obtain ~70% quark-jet efficiency at 80% gluon-jet rejection
- A simple Fisher discriminant is as effective as using Boosted Decision Trees.
- The "quark-iness" or "gluon-iness" of a jet is linearly related to its calorimeter response.
 - Can hence be used to parameterize JES uncertainty!

My CERN experience

- IPP/CERN summer student program.
- ~300 summer students from ~100 countries.
- 5 week lecture series.

22/23

- Experiment tours.
- Europe travel.

- Presenting to and getting feedback from other groups.
- ROOT, machine learning, data.
- Working independently on a research project.
- Time management between work and fun.

Many thanks to:

My supervisor Dag Gillberg! Ben Nachman and the q/g tagging group The JES/JER group

Future work

- Create a software tool to decorate jets with a hadron level quark/gluon label.
- Use this tool as part of ATLAS jet reconstruction so all jets are labelled.
- Use this label in JES uncertainty parameterization.

- Number of constituents.
- Width.
- Mass.
- Fraction of jet p_{T} carried by:
 - Charged hadrons
 - Photons
 - The highest- p_{T} hadron
- Total jet charge, weighted by $p_{T}^{0.5}$.
- Number of constituents carrying 90% of jet p_{T} .

• Effective number of constituents:

$$V_{\text{const}}^{\text{eff}} = \frac{\left(\sum_{i} p_{\text{T},i}\right)^2}{\sum_{i} p_{\text{T},i}^2}$$

1

• Jet energy sharing value:

$$p_{\rm T}D = \frac{\sqrt{\sum_i p_{{\rm T},i}^2}}{\sum_i p_{{\rm T},i}}$$

 Energy-energy-correlation angularity with β = 0.2, 1.0, 2.0.

$$C(\beta) = \frac{\sum_{i} \sum_{j} p_{\mathrm{T},i} \times p_{\mathrm{T},j} \times (\Delta R(i,j))^{\beta}}{(\sum_{i} p_{\mathrm{T},i})^{2}}$$

How effective are the classifiers?

One metric is the quark-jet efficiency at 80% gluon-jet rejection.

- 1. Make a cut so that 80% of the gluon jets are excluded.
- 2. What fraction of quark jets survive?

Have we avoided generator dependance?

Distance between classifier peaks on previous slide

Distance between parton label peaks on previous slide

Have we avoided generator dependance?

Distance between classifier peaks on previous slide

Distance between parton label peaks on previous slide

Not yet

- Preliminary results: still a spread between empty bubbles of different colours. More work is needed.
- Generator-dependent parton information was still used for training – might need a new approach to see improvement.