

DEAP-3600 Data Analysis

Implementing an Intermediate Lifetime for Liquid Argon Scintillation Timing

By: Adam Smith-Orlik

Thursday, August 15, 2019

- Background
- Motivations
- How Implementing Intermediate Lifetime
- Results
- Next Steps
- Questions

Background—What is DEAP-3600?

- DEAP is a Dark Matter Experiment using Argon Pulse-shape Discrimination
- Searching for direct detection of WIMPs (Weakly Interacting Massive Particles) as a dark matter candidate
- Using 3600kg of Liquid Argon (LAr) cooled to 90K in a 170cm diameter spherical acrylic vessel surrounded by 255 PMTs situated 2km underground at SNOLAB in Sudbury

Background—What is DEAP-3600?

Thursday, August 15, 2019

Adam Smith-Orlik, DEAP-3600 Data Analysis

Fig 1: Cross-section of the DEAP-3600 detector.

Background—Pulse-shape Discrimination (PSD)

- Pulse shape discrimination in LAr allows for the separation of electron (ER) and nuclear (NR) recoil scintillation events
- The timing of scintillation (singlet and triplet lifetimes) in LAr is unique for different events and can be grouped into ER and NR
- Ar39 beta decays make up the largest background and can be identified by their singlet-triplet ratio in the ER band
- The WIMP-nucleon signature occurs in the NR band

Thursday, August 15, 2019

Background—Pulse-shape Discrimination

Thursday, August 15, 2019

Background—Pulse-shapes and fprompt

- The Pulse-shape is the resulting plot of the sum of the photon intensity detected by all 255 PMTs in the event window (10µs)
- fprompt is the fraction of the light detected in the prompt window (-28 to 60ns) over the entire event window
- ER and NR bands are plotted on an fpromt vs energy (qPE) plot as seen in Figure 2

Thursday, August 15, 2019

Background—Pulse-shapes and fprompt

Fig 3: Example of pulse-shape from -100 to 500.

Thursday, August 15, 2019

Fig 4: Data MC

comparison for

fprompt of

Ar39.

Motivation fprompt DEAP-3600 Simulation INTERNAL Entries 101703 2500 Ar39 MVA Data Ar39 MVA MC 2000 Entries 1500 1000 500 0.2 0.25 0.3 0.35 0.4 Absolute Difference 600 400 200 0 -200 -400 -600 -800 0.2 0.25 0.3 0.35 0.4 fprompt

Thursday, August 15, 2019

Motivation

- Differences in fprompt and other prompt-type variables, between Data and MC for Ar39
- Root of these differences are the pulse-shape Data and MC comparisons
- If agreement between Data and MC at the pulse-shape level is made better so will the agreement at the prompt level

Thursday, August 15, 2019

Motivation

• Evidence for the existence of an intermediate lifetime between the singlet and triple lifetime can be found in the pulse shape data:

Thursday, August 15, 2019

Motivation

• Evidence for the existence of an intermediate lifetime between the singlet and triple lifetime can be found in the pulse shape data:

Fig 6a: Pulse shape comparison without intermediate lifetime.

Fig 6b: Zoomed pulse shape without intermediate lifetime

Thursday, August 15, 2019

• Current form of the model of the time structure constant for liquid argon scintillation:

$$I_{Ar}(t) = I_0 \left[\frac{R_s}{\tau_s} e^{-\left(\frac{t}{\tau_s}\right)} + \frac{R_t}{\tau_t} e^{-\left(\frac{t}{\tau_t}\right)}\right]$$

Singlet Lifetime Triplet Lifetime

Eqn 1: Current time structure of pure Liquid Argon Scintillation. [1]

• From Tina's work-in-progress pulse-shape paper the following function has been suggested for the liquid argon scintillation time profile:

• To implement this into RAT's GLG4Scint.cc physics processor we need to model the intermediate term as a third exponential:

$$I_{Ar}(t) = I_0 \left[\frac{R_s}{\tau_s} e^{-\left(\frac{t}{\tau_s}\right)} + \frac{R_I}{\tau_I} e^{-\left(\frac{t}{\tau_I}\right)} + \frac{R_t}{\tau_t} e^{-\left(\frac{t}{\tau_t}\right)}\right]$$

Exponential model of the Intermediate Lifetime

Eqn 3: Three Exponential Model of the Time structure of pure Liquid Argon Scintillation.

• The task is to find the parameters R_I and τ_I for which the exponential model fits Tina's model

Current Model	Lifetime [ns]	Weight	Tina's Model	Lifetime [ns]	Weight
Singlet	6.0	0.23	Singlet	8.7	0.2
Intermediate	N/A	N/A	Intermediate	88	0.05
Triplet	1590	0.73	Triplet	1408	0.62

• The task is to find the parameters R_I and τ_I for which the exponential model fits Tina's model

Tina's Model	Lifetime [ns]	Weight	3 Exponential Model	Lifetime [ns]	Weig
Singlet	8.7	0.2	Singlet	8.7	0.2
Intermediate	88	0.05	Intermediate	??	??
Triplet	1408	0.62	Triplet	1408	0.62

• The task is to find the parameters R_I and τ_I for which the exponential model fits Tina's model

3 Exponential Model	Lifetime [ns]	Weight	
Singlet	8.7	0.2	
Intermediate	78	0.04	
Triplet	1408	0.62	

Fig 7: Comparison between different models for the time structure of liquid argon scintillation.

Thursday, August 15, 2019

• Why are they so similar? Expanding as a Taylor series about t = 0:

• Why are they so similar? Expanding as a Taylor series about t = 0:

For $\frac{t}{\tau} \ll 1$ the approximations are very similar!

Thursday, August 15, 2019

<u>Results</u>

Thursday, August 15, 2019

Results

DEAP-3600 INTERNAL fprompt Comparison of Data and 3 Exp Model MC

Thursday, August 15, 2019

Adam Smith-Orlik, DEAP-3600 Data Analysis

Fig 8: Comparison of fprompt distribution for 3 Exp MC with data.

Results

Thursday, August 15, 2019

Adam Smith-Orlik, DEAP-3600 Data Analysis

fprompt distribution for 3 Exp MC with data.

Fig 8: Comparison of

24

Next Steps

- The addition of the intermediate component has an effect on the pulse-shape but does not resolve the shift in the MC with respect to the data
- Validate the effect on fprompt by running larger simulations and comparing with reprocessed data with same cuts applied

Thursday, August 15, 2019

Questions

Thursday, August 15, 2019

BACKUP SLIDES

Thursday, August 15, 2019

BACKUP SLIDES

Fig 10: Comparison between different models for the time structure of liquid argon scintillation with linear axes.

Thursday, August 15, 2019

BACKUP SLIDES

sumtrace_qpe

Fig 11: Pulse-shape plot with log Y axis.

Thursday, August 15, 2019